
66 09-2012     elektor     

Info & Market

BasicCard goes contactless
A discreet alternative
By Patrick Gueulle (France)

The only chip card that you can program 

in BASIC has now been on the market 

for more than ten years. It remains 

under continuous development: in a 

new twist, this well-known card with an 

open operating system is now available 

in an RFID version. As well as the new 

facilities for contactless operation, very 

powerful (and free!) development tools 

are now available to provide an easy 

way to get to grips with this fascinating 

technology.

The philosophy behind the product has not changed since the first 
‘Compact’ BasicCard appeared in 1998: put into the hands of devel-
opers (which includes interested enthusiasts) the means to develop 
their own applications independently of the mass-market chip 
card manufacturers. The result is a complete range of asynchro-
nous cards using Flash technology, with products available in small 
quantities and even individually. With the help of a (re-)program-
mable virtual machine, which in some versions was even capable 
of supporting several applications simultaneously, there is support 
for a high-level language simpler, but no less powerful, than Java: 
ZCBasic (Figure 1).

A complete development environment (compiler, simulator and 
double-debugger, along with a manual running to some 250 pages) 
is available for free download at [1].

With just a couple of lines of source code it is possible to make a 
BasicCard compatible with just about any terminal, including for 
example a mobile phone. This existing know-how can now be trans-
ferred to contactless applications using the ZC7.5 RFID version of 
the card. The transition is also simplified by the use of the ZC7.5 
Combi card, which offers two interfaces: one over contacts (trans-
port layer protocol T=0 or T=1) and one contactless (ISO 14443 
type A T=CL). An ACR122 or Omnikey 5321 makes a suitable RFID 
reader for the contactless interface.

Card applications
Twenty or so lines of code (RFIDspy.BAS [2]) suffice to demonstrate 
the flexibility of the ZC7.5 Combi card. At under 400 bytes of P-code 
the program occupies just a tiny fraction of the 32 kbyte EEPROM 
space in the powerful IC. This short program is a T=CL version of the 
logger that we presented for the first T=0 BasicCard with contacts in 
the May 2002 issue of Elektor [3] (for card version ZC4.1). The pro-
gram can store and subsequently dump the commands used by a 
reader as part of its dialogue with a card presented to it. Depending 
on the reader, this ‘impostor’ will either be rejected almost instantly 
or be accepted (for a while at least) by the reader as a genuine card 
intended for use with it.

The underlying idea, of course, is to use this code as a basis for incre-
mental extension: as more and more of the commands emitted by 
the reading device are understood, code can be written to deal 
more precisely with them, thus better emulating a genuine card. 
There is a certain amount of detective work to be done in unmask-
ing the security mechanisms used in the design and in determining 
their strengths and weaknesses. In summary, we have a very handy 
experimental tool.

Skipping over the first three lines of the source code, which are 
just preparatory declarations, we come to a series of ‘#Pragma’ 
directives, of which the first two are specific to operation in con-



67elektor     09-2012

BasicCard goes contactless

tactless mode. The first thing to know is that most contactless 
objects (cards and tags) have a unique number (or UID), several 
bytes long, which is written into ROM during manufacture. This is 
occasionally used as part of a defence against cloning, but its main 
use is during the anti-collision process used by the reader to com-
municate with a single specific card when more than one is within 
its range. The details of this process are relatively complex, but 
with luck card and reader will handle it all themselves: unless you 
really want to get his hands dirty, as an applications programmer 
you need not get involved. However, you can specify the number 
of bytes that will be used to form the UID in order to match the 
characteristics of another card as closely as possible. The ZC7.5 
supports three standard variants: ‘single’ (four bytes, like MIFARE 
Classic), ‘double’ (seven bytes, like MIFARE Ultralight), and ‘triple’ 
(ten bytes). It is also possible to replace the fixed UID in the chip 
with a random value to help the owner of a card to avoid being 
tracked. In our example the UID is sent out as a group of four ran-
dom bytes when a reader starts polling:

#Pragma UID(Random,Single)

At the beginning of communication begins between reader and 
card, the reader selects it and waits for its reply (ATS for ‘answer to 
select’), which is comparable to ATR (‘answer to reset’) in the case 
of a card with contacts.

#Pragma ATS(TA1=0,FWI=7,TC1=0,HB=”EMVA”)

This second command allows the default communications param-
eters to be modified, either partially or completely, in order to 
optimise compatibility with a particular reader. In this example 
we choose compatibility with the ‘EMV Contactless Specifications’ 
(which are publicly available: [4]). These specifications ensure com-
patibility for electronic payments between chip cards and termi-
nals that bear a special logo indicating that they comply with them 
(Figure 2).

In a similar way we can modify the ‘ATR’ parameters of the card, 
which affect its communications over the contact interface when 
it is connected to a suitable reader:

#Pragma ATR(Direct,T=1,HB=”RFIDspy”)

In this case we specify use of the T=1 protocol and select ‘direct con-
vention’ for communications; we could equally well have used the 
T=0 protocol and/or ‘inverse convention’. We will now look at what 
happens in the card when it is selected by the reader. The BasicCard 
has an internal file system, similar to MS-DOS. Opening a file called, 
for example, ‘Card.Log’, can be done as follows:

Open “Card.Log” For Append As #1

To allow this file to be deleted using an external instruction, it is 
convenient to define a special command for the purpose. Here we 

have called the command ‘FLUSH’:

Command &HC8 &HA2 FLUSH()
Close
Kill “Card.Log”
End Command

Now, if we send the byte sequence C8 A2 00 00 00 to the card it 
will delete the file. The main part of the program is found in the 
next seven lines:

Command Else SAVE(S$)
Call SuspendSW1SW2Processing()
C$=CHR$(CLA)+CHR$(INS)+CHR$(P1)+CHR$(P2)+Chr$(Lc)+Chr$(L
e)+S$
S$=String$(Le,&HFF)
Write#1,C$
SW1SW2=&H9000
End Command

Figure 1. The ZeitControl BasicCard development environment 
in action.

Figure 2. The EMV contactless logo is found on an increasing 
number of point-of-sale terminals.



68 09-2012     elektor     

Info & Market

That is all that is needed to trap any unrecognised command (hence 
the ‘Else’) received by the card and store it in the file Card.Log along 
with the parameters CLA, INS, P1, P2, Lc, Le and any data received 
from the terminal (‘incoming’ commands).

For the outgoing message the card delivers by default a number of 
FFh bytes equal to the value of Le (the expected data length). A dif-
ferent reply can be constructed if required by changing the contents 
of S$ as required. The status bytes SW1 and SW2 can also be changed 
from their default values of 90 00 depending on the desired effect 
on the reader.

Terminal application
Having collected some information in the file Card.Log we will want 
to read it from the card for further analysis. The file is normally left 
open so that data from several consecutive sessions can be logged, 
and so the first thing the program RFIDutil.BAS has to do is send the 
command C8 04 00 00 00, which closes the file as follows:

Command &HC8 &H04 COP(Lc=0,S$)
Close#1
S$=”(c)2009 Patrick GUEULLE”
End Command

Just two corresponding lines are required in the source code for the 
terminal:

Declare Command &HC8 &H04 COP(S$,Le=&H17)
Call COP(S$)

Recovering the contents of the file is equally straightforward. In the 
terminal code we add the prefix ‘@:’ to the filename, and read the 
file as normal. The operating system generates all the necessary 
commands automatically:

Open”@:card.log” For Input As #1

The following instruction is then used to extract one by one the 
commands for which the file contains the reply information:

Input#1, Z$

The rest of the terminal code is concerned with converting the con-
tents of the data file into readable text, storing it on the hard disk 
and displaying it on the screen.

A practical example
Once you have had a look at the manual you can decide whether you 
prefer to use the development environment, which is well suited 
to organising projects, or to drive the ZCMBasic compiler from 
the command line. The result of compilation is a file RFIDutil.EXE, 
which can be run directly from the Windows command line, and a 

file RFIDspy.IMG (or RFIDspy.DBG), which has to be loaded into the 
memory on the card. With the card thus prepared, all you need to 
do is bring it within range of the terminal whose characteristics you 
are investigating.

The author tested the card at the point-of-sale terminal at the 
checkout in a French supermarket. The supermarket accepts pay-
ments of up to 20 Euro using contactless EMV cards such as Master-
Card PayPass or Visa payWave. The BasicCard was brought within 
range of the terminal immediately before the real payment was car-
ried out using a conventional bank card. Subsequent analysis of the 
file Card.Log revealed a sequence of select commands resembling 
the following:

00 A4 04 00 0E 32 50 41 59 2E 53 59 53 2E 44 44 46 30 31
00 A4 04 00 07 A0 00 00 00 04 30 60 
00 A4 04 00 07 A0 00 00 00 04 10 10 
00 A4 04 00 07 A0 00 00 00 04 99 99 
00 A4 04 00 07 A0 00 00 00 03 20 10 
00 A4 04 00 07 A0 00 00 00 03 10 10 
00 A4 04 00 07 A0 00 00 00 43 10 10 
00 A4 04 00 07 A0 00 00 00 42 10 10 

The initial 00 stands for the ISO class (CLA) of the command, and 
A4 for the opcode (INS). Then 04 00 give the parameters P1P2, fol-
lowed by a length indicator byte (Lc) and the application identifier 
(AID). We have discarded the null byte at the end of each line as it is 
not of any interest for analysis and only serves to indicate that the 
command does not expect a reply (Le = 0).

The first line represents an attempt to select the ‘PPSE’ (Proxim-
ity Payment System Environment) with the identifier, transmitted 
in ASCII, 2PAY.SYS.DDF01. This is exactly analogous to PSE in the 
case of EMV cards with contacts, which use the identifier 1PAY.
SYS.DDF01 [5]. Our card replies with invalid data and so the termi-
nal deduces that the PPSE, which at this point would normally sup-
ply a list of applications supported by the card, is not available. The 
terminal then proceeds to attempt to select in turn all the applica-
tions which it supports in the hope of finding one which also rec-
ognised by the card.

The next two lines show the terminal attempting to select 
two MasterCard applications, with priority given to Maestro 
(A0 00 00 00 04 30 60), a card which requires systematic (on-
line) authorisation.

Before the terminal goes on to attempt to select the Visa 
Electron (A0  00  00  00  03  20  10) and Visa credit/debit 
(A0 00 00 00 03 10 10) applications, there is an attempt to select 
the mysterious application A0 00 00 00 04 99 99. This might 
correspond to a supermarket loyalty card: the contactless reader is 
apparently capable of dealing with these as well as with bank cards. 
The final selection attempt is for the French Carte Bleue credit card 
(A0 00 00 00 42 10 10).



69elektor     09-2012

BasicCard goes contactless

On the other hand, a terminal that only accepts cards with contacts 
(such as a public telephone or petrol pump) might attempt to select 
applications in the following sequence:

00 A4 04 00 07 A0 00 00 00 42 10 10 
00 A4 04 00 07 A0 00 00 00 42 20 10 
00 A4 04 00 0E 31 50 41 59 2E 53 59 53 2E 44 44 46 30 31 
00 A4 04 00 07 A0 00 00 00 03 10 10 
00 A4 04 00 07 A0 00 00 00 03 20 10 
00 A4 04 00 07 A0 00 00 00 04 10 10 
00 A4 04 00 07 A0 00 00 00 04 30 60 

Here we see that the terminal attempts to select French bank cards 
before the PSE. Only after that does it attempt to select interna-
tional applications. In both cases the terminal’s strategy is designed 
to make the transaction as quick as possible, which is especially criti-
cal in contactless applications.
One will sometimes encounter an attempt to select the Moneo 
application (00 A4 04 00 06 A0 00 00 00 69 00): this is an elec-
tronic wallet that is available in versions with and without contacts. 
Identifiers more than ten bytes long betray the existence of a card 
‘co-branded’ with one or more commercial suppliers.
The author’s next step is to experiment with contactless bank cards 
outside his home country. Contactless payment systems are being 
rolled out in many European countries including the UK, and it is 
expected that the system will be in widespread use for small pay-
ments within the next few years.

(090378)

Internet Links

[1]  	 www.basiccard.com

[2] 	 www.elektor.com/090378

[3] 	 www.elektor.com/010138

[4] 	 www.emvco.com

What’s in the kit?
The BasicCard is developed by ZeitControl, a small business based in Germany that evolved from 
being a vendor of time tracking systems into a specialist in chip cards. The first BasicCard was pro-
duced in 1996.

Compared to earlier BasicCard kits the ‘dual interface’ version features the addition of an RFID pro-
totyping board carrying the TagTracer 14443 with a USB connection, buzzer, LED indicators and a 
printed antenna. These make developing applications much easier. In the author’s opinion this de-
velopment kit is a distinctive product, and is considerably more flexible than other similar units on 
the market.

•	Omnikey 5321 USB – dual interface PC/SC smart card reader/writer

•	Pocket card reader (balance checker)

•	Development PCB for contactless ISO 14443 USB reader/writer

•	Software development kit (SDK) for Windows

•	Documentation on CD-ROM

•	Printed technical manual (250 pages)

•	4 off BasicCard ZC7.5 Combi (32 kbyte EEPROM)

Further information is available at www.basiccard.com


